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Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic
performance impairment with heat stress and dehydration. J Appl Physiol 109: 1989–1995,
2010. First published August 5, 2010; doi:10.1152/japplphysiol.00367.2010.—Environ-
mental heat stress can challenge the limits of human cardiovascular and tempera-
ture regulation, body fluid balance, and thus aerobic performance. This minireview
proposes that the cardiovascular adjustments accompanying high skin temperatures
(Tsk), alone or in combination with high core body temperatures (Tc), provide a
primary explanation for impaired aerobic exercise performance in warm-hot envi-
ronments. The independent (Tsk) and combined (Tsk � Tc) effects of hyperthermia
reduce maximal oxygen uptake (V̇O2max), which leads to higher relative exercise
intensity and an exponential decline in aerobic performance at any given exercise
workload. Greater relative exercise intensity increases cardiovascular strain, which
is a prominent mediator of rated perceived exertion. As a consequence, incremental
or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a
slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed
that high Tsk and Tc impair aerobic performance in tandem primarily through
elevated cardiovascular strain, rather than a deterioration in central nervous system
(CNS) function or skeletal muscle metabolism. Evaporative sweating is the prin-
cipal means of heat loss in warm-hot environments where sweat losses frequently
exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of
body mass) then aerobic performance is consistently impaired independent and
additive to heat stress. Dehydration augments hyperthermia and plasma volume
reductions, which combine to accentuate cardiovascular strain and reduce V̇O2max.
Importantly, the negative performance consequences of dehydration worsen as Tsk

increases.

hypohydration; fluid balance; environment; critical core temperature; fatigue

HUMAN TEMPERATURE REGULATION processes maintain core body
temperature (Tc) over a narrow functional range despite ele-
vated metabolic rates and exposure to very hot environments
(44). During submaximal exercise in warm-hot environments,
humans limit exercise hyperthermia by balancing metabolic
heat gain with dry and evaporative heat loss. Steady-state Tc is
proportional to both absolute and relative metabolic rate within
the prescriptive zone (57, 67, 87). Greater heat strain results
when exercise intensity increases (17), clothing and equipment
are donned (61, 63, 81), and when environmental heat stress
becomes more severe (66). The combination of exercise and
environmental heat gain also place high demand on evapora-
tive cooling. If fluids are not adequately replaced, then signif-
icant dehydration (�3% total body water; �2% body mass)
often occurs. The independent and combined effects of envi-

ronmental heat stress and dehydration can challenge the limits
of human temperature regulation and aerobic performance.
However, the putative mechanisms responsible for impaired
aerobic performance remain debatable.

Physiologists have long been intrigued by the ability of
humans to maintain adequate cardiac output and blood pressure
to simultaneously dissipate body heat and sustain muscle force
generation in hot environments. Although our understanding of
the complex interplay among the physiological systems that
govern these responses has evolved, the precise mechanistic
underpinnings to explain impaired aerobic exercise perfor-
mance in warm-hot weather remain unknown. Exercise-heat
stress with or without dehydration may impair aerobic perfor-
mance via one or more mechanisms related to central nervous
system (CNS), skeletal muscle (metabolism), or cardiovascular
system (blood flow) function (12, 14, 15, 27, 37, 70, 73, 74).
Focus on a high Tc has been the major mechanism and unifying
explanation for impaired aerobic performance in the heat (43,
68, 69, 73, 74, 76, 77), while the historical emphasis of
cardiovascular strain accompanying high Tsk and skin blood
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flow (SkBF) (85) has only recently been reconsidered in detail
(22, 37, 53). Unlike Tc, Tsk is drastically influenced by both
environmental conditions and thermoregulatory responses. The
potential for Tsk to fluctuate broadly has important implications
for SkBF requirements, cardiovascular function and oxygen
delivery (52, 85, 86), sensory input (30, 80), evaporative fluid
loss (51), and other important performance-related factors
common to the heat. In this minireview, we define a Tsk �35°C
as “high” (above the thermoneutral zone) (88) while acknowl-
edging that Tsk warmed over a broad range will likely produce
a continuum of effects (53, 88). We also recognize that Tc

(and the Tc � Tsk gradient) can alter the Tsk-SkBF relation-
ship (6, 52, 85).

The purpose of this minireview is to evaluate the strength of
the evidence supporting how heat stress impairs aerobic exer-
cise performance in warm-hot weather. Potential CNS, muscle,
and cardiovascular phenomena are examined. We provide a
pragmatic explanation for impaired aerobic performance in the
heat, both with and without dehydration, using well-defined
physiological and behavioral concepts. Our main thesis is that
high Tsk (or combination of high Tsk with high Tc) reduces
V̇O2max due to cardiovascular limitations that are exacerbated
by dehydration. A shrinking cardiovascular reserve requires
greater relative exercise intensity and sensation of effort for
any given exercise power output. When the effort is protracted,
an exponential decline in aerobic performance is observed. We
suggest that the evidence for aerobic exercise performance
impairments in the heat is better explained by cardiovascular
(and oxygen delivery) limitations, rather than a deterioration in
neuromuscular factors related to deep body temperature per se.
While we identify the cardiovascular system as primary for
limiting performance in the heat, we acknowledge that the
CNS and skeletal muscle systems also provide important sen-
sory input to the conscious brain and play a role in performance
impairment.

EXERCISE PERFORMANCE IN THE HEAT

The well-documented impact of environmental heat stress
on aerobic exercise “performance” has been evaluated using
time to exhaustion (TTE) tests (incremental or constant work
rate) and time trial (TT) tests (self-paced) in both laboratory
and field settings. Galloway and Maughan (31) conducted one
of the first studies to systematically compare the effects of
graded heat stress on prolonged aerobic exercise performance.
Using an ambient temperature range of 4–31°C, they demon-
strated that TTE was nearly 42 min shorter (44%) in the
warmest environment, relative to the study optimum (11°C).
Similarly, MacDougal et al. (58) showed that TTE was short-
ened by 42 min (47%) when Tsk was increased from �29 to
35°C using a water-perfused suit. The size of the heat-related
performance impairment in these studies (�45%) is roughly
two times larger than the typical variability in the measurement
itself [coefficient of variation (CV) �25%] (45). The magni-
tude of the signal-to-noise ratio (�2.0) illustrates the strong
negative effect of environmental heat stress on aerobic exercise
performance.

In self-paced competitive running events, Ely et al. (23)
found (Fig. 1) that marathon running performance slowed by
�2% (2–3 min) in elite competitors, while 3-h finishers slowed
by �10% (18 min) as wet bulb globe temperature (WBGT)

increased from 10 to 25°C (air temperature 8–22°C). Impor-
tantly, the smaller apparent effect magnitude (2 to 10%) is
balanced by the fact that self-paced exercise is a more reliable
test modality (CV 1–5%) (46), and thus the signal-to-noise
ratio remains �2.0. It is interesting to point out that in warmer
weather, faster runners choose a slower, constant pace from the
outset, while slower runners start at a faster desired pace only
to decelerate (25). Tatterson et al. (94) observed similar find-
ings in cyclists when comparing shorter (30 min), self-paced
exercise in warm (32°C) vs. temperate (23°C) air temperatures.
These latter studies indicate a change in behavior during
self-paced performance tests due to heat stress and suggest that
pacing strategy (28) may provide insight into how or why
performance becomes impaired.

It is well established that heat stress degrades V̇O2max (2, 34,
75, 93, 100) and that anything that reduces V̇O2max can impair
aerobic performance (3, 19). It is also well recognized that
multiple physiological mechanisms can interact to influence
aerobic performance outcomes. A shorter, self-paced aerobic
test eliminates the potential for substrate depletion, marked
heat storage, and dehydration common to more prolonged
exercise in the heat. In order to test the hypothesis that higher
Tsk alone might alter performance and pacing, Ely et al. (22)
examined 15-min cycling TT performance in two environ-
ments (20 and 40°C), which produced Tsk of 31 and 36°C,
similar to MacDougal et al. (58), while Tc remained near 38°C.
Ely et al. (22) found that ratings of perceived exertion (RPE),
heart rate (HR), and Tc were similar between self-paced trials.
Total work performed at 40°C was 15–20% less than 20°C
(with test CV �5%) similar to the performance decrement
observed for the same task when ascending from sea level to
3,000-m altitude (60). Volunteers began the TT at the same
pace in both environments, only to fall off pace at 40°C after
the first 3 min of exercise (22). Collectively, TTE and TT
studies demonstrate consistently that heat stress impairs aero-
bic exercise performance. Although cardiovascular (85, 86)
and oxygen uptake adjustments to high Tsk (2, 34, 75, 93,100)
represent a plausible explanation linking perceived exertion
(80) and behavioral changes (10) with impaired performance
(22), mechanistic conclusions remain uncertain.

Fig. 1. Impact of weather on marathon running performance across a range of
finishing times. As wet bulb globe temperature (WBGT) increases from 10 to
25°C [dry bulb temperature (Tdb) � 8–22°C], elite competitors slow by �2%
(2–3 min), while 3-h finishers slow by almost 10% (18 min). WBGT,
Reproduced from Ref. 23.
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HYPERTHERMIA AND THE CENTRAL NERVOUS SYSTEM

Over the past 10 years, the most popular explanation for
impaired exercise performance in a warm-hot environment has
been a �40°C “critical” Tc (43, 68, 69, 73, 74, 76, 77). The
typical explanation is that this “critical” Tc threshold represents
a safety brake for catastrophic hyperthermia (70, 74), or at least
the precipice for a progressive downward performance trend
(73). However, both of these interpretations can be challenged.
First, a minimal lethal body temperature for humans is consid-
erably higher (42°C) (8) and human CNS cells can tolerate
blood temperatures in excess of 41°C without harm (20).
Second, competitive runners (outside the laboratory) are often
observed to achieve Tc � 40°C (even � 41°C), without
apparent sequelae, when Tsk was presumably low (9, 59, 84).
Third, two recent studies could document no decline in running
performance (velocity) during either short (8 km) or long (21
km) competitive running races despite Tc � 40°C (24, 56).
Fourth, no study has clearly demonstrated an independent
effect of a “critical” Tc, as confounding factors covary with Tc.
Studies documenting an association between fatigue during
dynamic, whole body exercise, and the attainment of a “criti-
cal” Tc were always performed under experimental conditions
that produced high skin and muscle temperatures, narrow
core-to-skin gradients, and substantial cardiovascular strain
(43, 68, 69, 76), any one of which affords a tenable explanation
for fatigue. Anticipatory models (97, 98) that focus on the rate
of body heat storage appear untenable (24, 49), but mechanistic
differences of theory are moot since both share logic that posits
fatigue or its regulation (cortical or subcortical) based on
avoidance of thermal injury.

Direct evidence of hyperthermia and degraded CNS function
comes from associations between a “critical” Tc and altered
brain wave (EEG), motor-neural output, and sensory changes
consistent with fatigue (69, 76, 77). However, EEG alterations
(69) may (78) or may not (83) be the consequence of reduc-
tions in brain blood flow, which ultimately represents a differ-
ent (cardiovascular) mechanism (38, 79). It was recently dem-
onstrated that the effects of heat stress on degrading neuro-
muscular function are progressive (95) and that as much as half
of the neuromuscular fatigue effects attributed to a hot brain
may be explained by hot muscles (96). It is not possible to say
whether the remaining loss of efferent motor cortical output is
the result of an unwilling or incapable participant, but it is well
documented that the same exercise task in the heat is often
perceived as more difficult or more uncomfortable than in
temperate conditions (10, 30, 76). RPE involves a variety of
integrated sensations that may converge to impact aerobic
performance (10, 30, 80). Heat stress increases RPE (76).
Anything that alters RPE may affect motivation driven motor-
neural firing (11, 26) and behavior (10). Mundel and Jones (65)
demonstrated that a menthol mouth rinse reduced RPE (com-
pared with placebo) by 15% and improved TTE by 9% during
exercise-heat stress. Similarly, Watson et al. (99) demonstrated
that a 30% decrement in TT performance in the heat (compared
with temperate control) was reduced to 19% with the same
RPE when subjects were given a dopamine reuptake inhibitor.
It would therefore appear that altered sensation can produce
greater tolerance to exercise-heat stress at the cortical level.
Importantly, however, the data of Watson et al. (99) illustrate
that the remaining 19% performance decline in the heat (vs.

temperate) must be attributable to a larger, intact performance-
limiting mechanism(s).

HYPERTHERMIA AND MUSCLE FUNCTION

Muscle function (mechanical and chemical) displays posi-
tive thermal dependence at the level of organismic perfor-
mance (4). Muscle hyperthermia from exercise significantly
increases the substrate flux through energy-producing bio-
chemical pathways, improves phosphorylative efficiency, fa-
cilitates dissociation of oxygen from hemoglobin, reduces fluid
viscosity, and enhances muscle contractility (4, 5, 7). In con-
trast, heating reduces time to exhaustion for sustained isomet-
ric contractions in small muscle groups (21). The importance
of an isometric model to understand the relative CNS contri-
bution to impaired force production in conjunction with a
“critical” Tc was alluded to above. But the relevance of
sustained isometric contraction of a small muscle toward aer-
obic performance in a dynamic whole body exercise model can
be questioned on many fronts (4). For example, isometric
contractions reduce skeletal muscle blood flow in proportion to
the percent maximal contraction intensity (82), thus inducing
very low oxygen contents and metabolite accumulation at
fatigue. With the Q10 effect of heat stress (4), deoxygenation
(hypoxia/dysoxia) and fatigue will occur more rapidly. Al-
though quantifying deterioration in CNS function during whole
body exercise may not be possible, it is well documented that
disturbances in local (peripheral) muscle metabolism, muscle
tension, or other factors can impact sense of effort (80). Muscle
blood flow, a cardiovascular limitation, is preserved during
submaximal aerobic exercise-heat stress (34, 71) and becomes
reduced only as a secondary consequence of hypotension
during severe heat stress (34). Although aerobic exercise in the
heat can produce exhaustion long before muscle glycogen
depletion is a contributing factor in endurance fatigue (27), the
fact remains that substrate depletion is accelerated by heat
stress (27, 50) at a time when oxidation rates of ingested
carbohydrates are simultaneously reduced (50). Therefore, as
submaximal aerobic exercise in the heat becomes protracted in
length, limited fuel availability can contribute to impaired
performance.

HYPERTHERMIA AND CARDIOVASCULAR FUNCTION

Exercise-heat stress demands blood flow to support energy
metabolism (muscle blood flow), temperature regulation
(SkBF), and CNS function (brain blood flow). When Tc and Tsk

become elevated, there is a reflex increase in SkBF and
cutaneous venous volume, while HR increases and cardiac
filling and stroke volume (SV) decline (6, 52, 85, 86). When
motivation is high and sensory cues ignored (10), a hierarchy
is observed near maximal exercise intensities whereby muscle
blood flow and arterial pressure are maintained at the expense
of SkBF (37), which reaches a plateau near a Tsk of 38°C (6).
Under circumstances in which considerable blood is displaced
to the skin, blood flow and oxygen delivery to the muscles, and
possibly brain (38, 78, 83), become compromised despite
maintenance of leg vascular conductance (34). Table 1illus-
trates that when Tsk is high, a rising Tc maintains a more
favorable Tc � Tsk gradient for reducing whole body SkBF
requirements for heat loss (54). Figure 2 plots the apparent Tc

tolerated, at task completion (24, 59) or at exhaustion (43, 81),
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with its associated Tsk and calculated SkBF requirements (85).
Note that Tc tolerance is inversely related to whole body SkBF
requirements, which suggests that a “critical” Tc may instead
be a perfusion issue (muscle, brain) related to high cardiovas-
cular strain. Indeed, high Tsk has been an important historical
index for heat tolerance (47, 48). The convergence of Tc and
Tsk can be a good predictor of exhaustion (81), although
predictive capacity may depend on the precise temperature at
which Tc and Tsk converge (72). Sawka et al. (91) report that,
when Tsk is made high by protective clothing or a severe
environmental heat load, exercise is ceased (voluntary or
collapse) in 50% of young healthy subjects at a Tc of only
38.5°C. Thus, in high heat stress situations with high Tsk,
exercise cessation will occur relatively quickly in the absence
of very high Tc at light-to-moderate exercise intensities.

During prolonged, submaximal exercise in less severe
warm-hot environments, muscle blood flow and blood pressure
are generally maintained, and thus explanations for fatigue are
often attributed to the approach or attainment of a “critical” Tc

(37, 43). But since a large V̇O2max is a prerequisite for success
in sports where aerobic endurance is contested (3, 19), it seems
plausible that the effects of heat stress on reducing V̇O2max

might better explain submaximal aerobic performance impair-

ments. High Tsk reduces V̇O2max as a consequence of high
SkBF, which displaces blood to the periphery and reduces
cardiac filling, resulting in a reduced maximal cardiac output
(COmax) (and thus V̇O2max) (2, 34, 58, 75, 85, 86, 93, 100). For
example, Arngrimsson et al. (2) demonstrated a stepwise re-
duction in V̇O2max and an increase in relative exercise intensity
across a range of ambient temperatures (25 to 45°C) that
increased Tsk by almost 6°C in the presence of modest Tc

elevations. Although Tc plays a minor role in modifying the
Tsk-SkBF relationship when Tc is high (6, 52), a high Tc can
also reduce cardiac filling by tachycardia when sympathetic
activity is high or by direct temperature effects on intrinsic HR
(15, 29, 41). The reduction in both COmax and V̇O2max result in
a shrinking cardiovascular reserve, which is the primary lim-
iting factor for aerobic exercise performance (3, 19). A greater
relative exercise intensity and sensation of effort is required for
any given exercise power output (3, 10, 19, 32, 80). As
exercise becomes protracted, performance is reduced exponen-
tially according to the formula log10(t) � A � (load/V̇O2max) �
B, where t is endurance time and A and B are the slope and
intercept relating t to the V̇O2max-specific relative workload
(32). Incremental or constant-rate exercise would be more
difficult to sustain (earlier fatigue) or would require a slowing
of self-paced exercise to achieve a similar sensation of effort.
While a variety of afferent physiological information can be
linked to the conscious sense of effort, the prominent contri-
bution of cardiopulmonary factors (HR, respiration, barorecep-
tors) to RPE during whole body exercise is widely acknowl-
edged (80). Earlier fatigue or slowing of pace can therefore be
explained by greater cardiovascular strain (85, 86), elevated
relative exercise intensity (3, 19, 32), increased perceived
exertion (80), and associated behavioral changes toward sen-
sory optimum (10).

EXERCISE PERFORMANCE WHEN DEHYDRATED

It is established that total body water deficits (dehydration) � 3%
(�2% body mass) consistently impair aerobic exercise perfor-
mance (14, 89, 90, 92). Practically, this means that if a person
initiates activity in a normal state of body hydration (euhy-

Fig. 2. Apparent core body temperature (Tc) tolerance during exercise-heat
stress and calculated skin blood flow (SkBF) with associated skin temperature
(Tsk). Tc and Tsk data pairs are from Refs. 24, 43, 59, 81. Heat production was
calculated as in Table 1 starting from the actual metabolic data given in the
original references. A point-to-point spline curve was generated with Graph-
Pad to interpolate and visually smooth data connections for presentation only
(no analytical model intended).

Fig. 3. Linear regression of plasma volume change (y) and body mass change
(x) following sweat loss or diuretic dehydration. Original data are shown for 18
volunteers (54 data points) dehydrated twice by 4.1 � 1.5% using 3–5 h of
exercise-heat exposure (sweat; n � 36) and once by 3.1 � 0.5% using 40–80
mg diuretic (furosemide; n � 18) on 3 separate occasions. Plasma volume
contraction with furosemide (yF � �3.8 � 3.6x) is double that for sweat (yS �
1.35 � 2.8x) at any given level of dehydration. Plasma volume changes
calculated according to Dill and Costill (18).

Table 1. Estimated whole body skin blood flow requirements
for prolonged, severe running exercise at different body core
and skin temperatures

Tc, C Tsk, C Gradient, C SkBF, l/min

38 30 8 1.1
38 34 4 2.2
38 36 2 4.4
39 36 3 3.0

Equation for whole body skin blood flow (SkBF) requirements for pro-
longed, severe running exercise is Qs �1/C � h/(Tc � Tsk), where C is the
specific heat of blood (0.87 kcal·C�1·l�1), Tc is body core temperature; Tsk is
skin temperature, h � heat production (kcal/min), and Qs � skin blood flow
(from Ref. 85), and where, for severe running exercise, net heat production (7.7
kcal/min) is estimated using 60 kg body mass and 325 m/min running velocity
(approximate pace for men’s world class 42-km foot race) after subtracting for
work (20% efficiency) and 50% dry and evaporative heat losses. Adapted from
Ref. 54.
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drated), dehydration-mediated performance decrements are re-
stricted to activities lasting 1 h or longer as sustainable exercise
sweating rates are typically �1.5 l/h. While dehydration can
reduce muscle blood flow (35, 36) and alter skeletal muscle
metabolism (27) during intense, exhaustive exercise in hot
environments, intense exercise in hot environments is limited
in duration and unlikely to be affected by dehydration if
exercise is begun well hydrated. Headache, or even thirst (92),
may also produce subjective feelings of fatigue or loss of vigor,
but attempts to measure somatosensory gating of afferent
neural signals in association with dehydration and performance
are thus far inconclusive (64).

Hypertonicity is an unavoidable consequence of dehydration
that helps mediate Tc elevation (89), which contributes to
increased cardiovascular strain (15, 62). Dehydration by 2–4%
body mass also produces an added challenge to meet whole
body blood flow requirements by reducing plasma volume up
to 10% (Fig. 3), which acts to reduce cardiac filling and SV
(39, 40, 41, 42). Dehydration by 2–4% body mass generally
reduces V̇O2max, although the effects are larger in warmer
environments (89). Just as plasma volume expansion by �10%
can improve V̇O2max by �5% (16), Nybo et al. (75) demon-
strated that 4% dehydration reduced blood volume by �5%
(plasma volume �10%) and lowered V̇O2max by 6% at Tsk

31°C and by 16% when Tsk was raised to 36°C (water-perfused
suit). As with heat stress alone, a reduced V̇O2max when
dehydrated would make incremental or constant-rate exercise
more difficult to sustain or require a slowing of self-paced
exercise to achieve a similar sensation of effort.

Hyperthermia and plasma loss each account for �50% of the
dehydration-mediated decline in SV and COmax (15, 33),
which we propose both can reduce V̇O2max and impair aerobic
performance. This idea is also consistent with the observation
that dehydration may impair exercise performance more under
heat stress (14, 33, 41, 75, 89) compared with cold exposure
(13, 41, 55). The strong modifying effect of Tsk on aerobic
performance when dehydrated supports the proposed underly-
ing SkBF demands and cardiovascular limitations on altering
V̇O2max, relative exercise intensity, and associated sensory
cues. Indeed, Kenefick et al. (53) quantified the relationship
between Tsk and aerobic performance degradation when dehy-
drated (4%) across a range of air temperatures (10–40°C) that
incrementally elevated Tsk (but not Tc). During a short aerobic
performance test that was identical to Ely et al. (22), and
therefore not easily confounded by other factors, Kenefick et
al. (53) reported a 1.6% decline in the total work performed for
every 1°C increase in Tsk starting at a Tsk intercept of 29°C. At
the same 4% level of dehydration, this amounted to a 3%
impairment in aerobic TT performance at an ambient temper-
ature of 10°C, increasing to 23% at ambient temperature of
40°C. Classic reports of larger aerobic performance reductions
in temperate weather at more modest (1–2%) levels of dehy-
dration (1) are likely the result of diuretic use, which doubles
the plasma volume reduction observed from sweat loss (Fig. 3).
A greater plasma volume reduction would presumably reduce
V̇O2max and aerobic performance proportionally (89).

SUMMARY

This minreview evaluates mechanisms by which heat stress
and dehydration impair aerobic exercise performance. The

physiological mechanism(s) that explain impaired aerobic ex-
ercise performance due to the independent and combined
effects of heat stress and dehydration are highly circumstantial.
The CNS and skeletal muscle systems provide important sen-
sory input to the conscious brain, and there is evidence that
each can play a role in impairing aerobic exercise performance
during heat and/or dehydration stress. However, the demands
and limitations on blood flow implicate a much larger perfor-
mance contribution by the cardiovascular system. During se-
vere heat stress conditions, physical exhaustion or collapse will
occur across a continuum of Tc (91) and is most likely the
result of the severe competition for blood flow, minimal Tc �
Tsk gradient, and inability to sustain required blood pressure
(34, 37). During submaximal aerobic exercise in hot weather,
performance is impaired by both high Tsk and Tc, which
combine to reduce V̇O2max (2, 34, 75, 93, 100), and thus
increase relative exercise intensity and sensation of effort at
any given workload (TTE) (32), or result in a diminished
workload (TT) to achieve a similar sensation of effort (22, 28,
94, 97). Significant dehydration (�2% body mass) takes time
to develop, but when present it augments hyperthermia (89)
and reduces plasma volume (Fig. 3), which independently
impact physiology (15, 33) while accentuating the negative
performance consequences of heat stress (53).

In this minireview, we provide a pragmatic explanation
whereby high Tsk and Tc impair aerobic performance in tandem
primarily through elevated cardiovascular strain, rather than
deterioration in CNS function or skeletal muscle metabolism.
Well-defined physiological and behavioral concepts support
the plausibility of this explanation (3, 10, 19, 28, 30, 32, 44,
80). We emphasize the importance of Tsk (SkBF) in the context
of aerobic exercise performance in warm-hot environments,
with and without dehydration. We also revisit the important
link between physiological strain and rated perceived exertion
(10, 30, 80) to more fully explain how heat stress and dehy-
dration act to impair aerobic exercise performance. Future
research might consider the implications of this review when
designing laboratory experiments to elucidate more precisely
the mechanism(s) for impaired aerobic exercise performance
during dehydration-heat stress.
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